11 April 2017 2017 09:30 AM GMT

New Perovskite Efficiency Record Is A Breakthrough With Significant Potential

Researchers at The Australian National University (ANU) have achieved a new record efficiency for low-cost semi-transparent perovskite solar cells in a breakthrough that could bring down the cost of generating solar electricity. The team led by The Duong from the ANU Research School of Engineering have achieved 26 percent efficiency in converting sunlight into energy, which could help make perovskite solar cells a viable alternative to existing silicon cells.

Perovskite is a material with a lattice-like structure that can help harvest light. Researchers have achieved 26 percent efficiency by mechanically combining perovskite with silicon solar cells. “Until now efficiencies of this kind have only been achieved using high-cost materials normally used on satellites,” said Mr Duong, a PhD student. “We are now a step closer to a low-cost alternative.” Silicon solar cell technology is about 90 percent of the solar market, but scientists around the world are working to find a way to make them more efficient, affordable, stable and reliable. The research is supported by $3.6 million in funding from the Australian Renewable Energy Agency.

Professor Kylie Catchpole from the ANU Research School of Engineering said the advances in solar technology were good news for consumers, although the perovskite cells were not yet ready for use on rooftops. “This breakthrough opens the way to increasing the efficiency of silicon solar cells further, and in a cheap way,” Professor Catchpole said. “The key challenge, for now, is achieving the same stability as we have with silicon solar cells that can be put out on a roof for 20 years using perovskite. “Over the next few years, we are planning to increase efficiencies to 30 per cent and beyond.”

The research has been published in Advanced Energy Materials. This work was part of the “High-efficiency silicon/perovskite solar cells” project led by University of New South Wales with research partners ANU, Monash University, Arizona State University, Suntech R&D Australia Pty Ltd and Trina Solar.

Courtesy Of The Australian National University (ANU). Photo: Professor Kylie Catchpole and The Duong, ANU Research School of Engineering.

August 24th 2018
E-Buses to Surge Even Faster Than EVs as Conventional Vehicles Fade

The electrification of road transport will move into top gear in the second half of the 2020s, thanks to tumbling battery costs and larger-scale manufacturing, with sales of electric cars racing to 28%, and those of e-buses (electric buses) to 84%, of their respective global markets by 2030. As the supply of cobalt emerges as a potential risk to the pace of growth in electrified transport over the next few years, the advance of e-buses will become more rapid than for electric cars, BNEF states.

August 15th 2018
Battery Boom: Wind And Solar Can Generate Half Of Worldwide Electricity By 2050

Coal is to shrink to just 11% of global electricity generation by mid-century, from 38% now, as costs shift heavily in favour of wind, solar and batteries. Wind and solar are set to surge to almost “50 by 50” – 50% of world generation by 2050 due to reductions in cost. “Cheap battery storage means that it becomes increasingly possible to finesse the delivery of electricity from wind and solar so that these technologies can help meet demand even when the wind isn’t blowing and the sun isn’t shining. The result will be renewables eating up more and more of the existing market for coal, gas and nuclear.”

September 17th 2018
MHI Vestas Signs Firm Order for Largest MW Project in Company History

MHI Vestas Offshore Wind will supply 90 of its flagship V164-9.5 MW turbines for the 860 MW Triton Knoll Offshore Wind Farm project; its largest MW project to date. MHI Vestas celebrated the financial close of the deal with innogy, at the site, confirming the project as the largest (MW) in the history of the turbine company. Affirming its strengthening position in the UK offshore wind market, the Danish-Japanese joint venture will supply 90 of the world’s most powerful commercially available turbine, the V164-9.5 MW, and has agreed on a comprehensive 5-year O&M agreement.

solar energy qmqr18

 

Benelux_IF_MPU_181